7.3.問題1
次の問題では、\( X \in M_{m,n} \) に対して、\( \sigma_1(X) \ge \cdots \ge \sigma_q(X) \) を \( X \) の特異値(大きい順に並んだもの)とし、\( q = \min\{m, n\} \) とする。
7.3.P1
行列 \( A \) の特異値が、極分解(7.3.1)における半正定値行列 \( P \) および \( Q \) の固有値であることを説明せよ。
行列解析の総本山

[行列解析]総本山
行列解析の総本山。行列解析の内容を網羅的かつ体系的に整理しています。線形代数の学習を一通り終えた方が、次のステップとして取り組むのに最適です。行列に関する不等式を研究するには、行列解析の知識が欠かせません。
コメント