[行列解析4.1.P12]

4.1.問題12

4.1.P12

\(A \in M_n\) が与えられたとき、\(A\) がエルミートならば、\(\mathrm{rank}\,A\) は非零固有値の数に等しいことを説明せよ。

ただし、非エルミート行列では必ずしも成り立たない。

\(A\) が正規行列ならば \(\mathrm{rank}\,A \ge \mathrm{rank}\,H(A)\) であり、等号成立は A が非零の虚固有値を持たないときに限る。

正規性の仮定は省略できるか?


行列解析の総本山

[行列解析]総本山
行列解析の総本山。行列解析の内容を網羅的かつ体系的に整理しています。線形代数の学習を一通り終えた方が、次のステップとして取り組むのに最適です。行列に関する不等式を研究するには、行列解析の知識が欠かせません。

コメント

タイトルとURLをコピーしました