[行列解析3.1.P9] 3.標準形と三角因子分解 X Facebook はてブ Pocket LINE コピー 2025.09.07 3.1問題9 3.1.P9 \(n\ge 3\) とする。\(J_n(0)^2\) のジョルダン標準形を求めよ。\(n=2m\)(偶数)のとき \(J_m(0)\oplus J_m(0)\)、\(n=2m+1\)(奇数)のとき \(J_{m+1}(0)\oplus J_m(0)\) になることを示しなさい。 [行列解析3.1]ジョルダン標準形の定理3.13.1.1 定義(3.1.2)J_1(\lambda) = , \quadJ_2(\lambda) =\begin{bmatrix}\lambda & 1 \0 & \lambda\end{bmatrix}(3.1.3)J = J_... 参考:Matrix Analysis:Second Edition ISBN 0-521-30587-X.(当サイトは公式と無関係です)
コメント