[行列解析4.5.P1]

4.5.問題1

4.5.P1

\(A, B ∈ M_n\) とし、\(B\) が非特異であるとする。ある \(C ∈ M_n\) が存在して \(A = BC\) となることを示せ。さらに、任意の非特異 \(S ∈ M_n\) に対して、\(SAS^∗ = (SBS^∗)C'\) が成り立ち、ここで \(C'\) は \(C\) と相似であることを示せ。


行列解析の総本山

[行列解析]総本山
行列解析の総本山。行列解析の内容を網羅的かつ体系的に整理しています。線形代数の学習を一通り終えた方が、次のステップとして取り組むのに最適です。行列に関する不等式を研究するには、行列解析の知識が欠かせません。

コメント

タイトルとURLをコピーしました