3.4.問題11
3.4.P11
\(A \in M_n\) を与える。\(A\) のワイル標準形とジョルダン標準形が同じであることと、次のいずれかが成り立つことは同値であることを示せ:
\(A\) が非退化(nonderogatory)である、または対角化可能である、
あるいは行列 \(B,C\) が存在して
行列解析の総本山
総本山の目次📚

[行列解析]総本山📚
行列解析の総本山。行列解析の内容を網羅的かつ体系的に整理しています。線形代数の学習を一通り終えた方が、次のステップとして取り組むのに最適です。行列に関する不等式を研究するには、行列解析の知識が欠かせません。
記号の意味🔎

[行列解析9.0]主要な記号一覧🔎
行列解析で使用している記号や用語の簡単な説明です。


コメント