[行列解析3.1.P4]

3.1問題4

3.1.P4

\(A \in M_n\) とする。ある複素数 \(c\) が \(|c|\neq 1\) を満たし、\(A\) が \(cA\) と相似であると仮定せよ。すると \(\sigma(A)=\{0\}\) であり、したがって \(A\) は冪零であることを示しなさい。

逆に、\(A\) が冪零なら、任意の \(0\neq c\in \mathbb{C}\) に対して \(A\) は \(cA\) と相似であることを示しなさい。


参考:Matrix Analysis:Second Edition ISBN 0-521-30587-X.(当サイトは公式と無関係です)

コメント

タイトルとURLをコピーしました