行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

8.正および非負行列

8.正および非負行列

[行列解析8.7]注記

注と参考文献 定理 8.7.2 は G. Birkhoff により “Tres observaciones sobre el álgebra lineal”, Univ. Nac. Tucumán Rev. Ser. A 5 (1946) ...
2025.11.06
8.正および非負行列行列解析
8.正および非負行列

[行列解析8.7.P15]バーコフの定理における頂点の上界

(8.7.P15)問題バーコフの定理における頂点の上界 \( n^2 - n + 1 \) を、\( (n^2 - n + 1) - (n - 1) = n^2 - 2n + 2 \) に改良できることを示せ。詳細を以下の手順で説明せよ:(...
2025.11.06
8.正および非負行列行列解析
8.正および非負行列

[行列解析8.7.P14]二重確率行列の置換相似による直和化

(8.7.P14)問題\( A \in M_n \) が二重確率かつ既約でない(reducible)場合、\( A \) は置換相似により、二重確率行列 \( A_1, A_2 \) からなる直和 \( A_1 \oplus A_2 \) ...
2025.11.06
8.正および非負行列行列解析
次のページ
1 2 … 60 次へ
ホーム
行列
行列解析
8.正および非負行列

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式