行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

7.正定値および半正定値行列

7.正定値および半正定値行列

[行列解析7.7.P38]

7.7.問題387.7.P38\(X \in M_n\) がエルミートであるとする。次を示せ:\(X\) が収縮であることと \(I \succeq X^2\) が同値である。
2025.10.29
7.正定値および半正定値行列行列解析
7.正定値および半正定値行列

[行列解析7.7.P37]

7.7.問題377.7.P37 \(A, B \in M_n\) が正定値であるとする。次を示せ: A \circ B^{-1} + A^{-1} \circ B \succeq 2I
2025.10.29
7.正定値および半正定値行列行列解析
7.正定値および半正定値行列

[行列解析7.7.P36]

7.7.問題367.7.P36\(A, B \in M_n\) をエルミート行列とし、次の行列を定義する: H = \begin{pmatrix} A & B \\ B & A \end{pmatrix}(a) (1.3.P19) を再確認...
2025.10.29
7.正定値および半正定値行列行列解析
次のページ
前へ 1 … 14 15 16 … 127 次へ
ホーム
行列
行列解析
7.正定値および半正定値行列

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式