行列解析

6.固有値の位置と摂動

[行列解析6.2.23]定理:不可約行列の同値条件

6.2.23定理6.2.23.行列 \(A \in M_n\) に対して、以下は同値である。(a) \(A\) は不可約である。(b) \((I + |A|)^{n-1} > 0\)。(c) \((I + M(A))^{n-1} > 0\)...
6.固有値の位置と摂動

[行列解析6.2.22]定義:不可約行列

6.2.22定義6.2.22.行列 \(A \in M_n\) が不可約であるとは、可約でない場合をいう。
6.固有値の位置と摂動

[行列解析6.2.21]定義:可約行列

6.2.21定義6.2.21.行列 \(A \in M_n\) が可約であるとは、置換行列 \(P \in M_n\) が存在してP^T A P =\begin{pmatrix}B & C \\0_{n-r,r} & D\end{pmatr...
6.固有値の位置と摂動

[行列解析6.2.20]系:SC性と行列エントリの関係

6.2.20系6.2.20.行列 \(A \in M_n\) およびノード \(i, j \in \{1, \dots, n\}\) に対して、\(i \neq j\) ならば、\(\mathcal{G}(A)\) において \(P_i\)...
6.固有値の位置と摂動

[行列解析6.2.19]系:SC性と行列の正性条件の同値性

6.2.19系6.2.19.行列 \(A \in M_n\) に対して、次の条件は同値である。 (a) AはSC性を持つ。(b) \((I + |A|)^{n-1} > 0\)。(c) \((I + M(A))^{n-1} > 0\)。証明...