行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

5.ベクトルと行列のノルム

5.ベクトルと行列のノルム

[行列解析5.2.P1]

5.2.問題15.2.P1もし \(0 \lt p \lt 1\) ならば、\lVert x \rVert_p = \left( |x_1|^p + \cdots + |x_n|^p \right)^{1/p}は \(\mathbb{C}^...
2025.10.01
5.ベクトルと行列のノルム行列解析
5.ベクトルと行列のノルム

[行列解析5.2]問題集

5.2.問題集5.2.P1 もし \(0 \lt p \lt 1\) ならば、\lVert x \rVert_p = \left( |x_1|^p + \cdots + |x_n|^p \right)^{1/p}は \(\mathbb{C}...
2025.09.30
5.ベクトルと行列のノルム行列解析
5.ベクトルと行列のノルム

[行列解析5.2]ノルムと内積の例

5.2 ノルムと内積の例ベクトル \(x = ^T \in \mathbb{C}^n\) のユークリッドノルム(\(l_2\)-ノルム)は、(5.2.1)\lVert x \rVert_2 = \left( |x_1|^2 + \cdots...
2025.09.30
5.ベクトルと行列のノルム行列解析
次のページ
前へ 1 … 76 77 78 … 86 次へ
ホーム
行列
行列解析
5.ベクトルと行列のノルム

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式