行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

5.ベクトルと行列のノルム

5.ベクトルと行列のノルム

[行列解析5.4.P5]

5.4.問題55.4.P5式 (5.4.2) の関数 \( f_k \) は次の性質を持つことを示せ:各 \( x \) に対して \( f(x) \to 0 \)、さらに \( \|f_k - f_j\|_1 \to 0 \) (\( k...
2025.10.03
5.ベクトルと行列のノルム行列解析
5.ベクトルと行列のノルム

[行列解析5.4.P4]

5.4.問題45.4.P4実または複素ベクトル空間上の二つのノルムは、式 (5.4.5) のように二つの定数と不等式によって関係づけられるとき、等価であることを示せ。
2025.10.03
5.ベクトルと行列のノルム行列解析
5.ベクトルと行列のノルム

[行列解析5.4.P3]

5.4.問題35.4.P3\( 1 \le p_1 \lt p_2 \lt \infty \) の場合、\( \mathbb{C}^n \) または \( \mathbb{R}^n \) 上の対応する \( l_p \)-ノルム間の最適境界...
2025.10.03
5.ベクトルと行列のノルム行列解析
次のページ
前へ 1 … 62 63 64 … 86 次へ
ホーム
行列
行列解析
5.ベクトルと行列のノルム

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式