行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

5.ベクトルと行列のノルム

5.ベクトルと行列のノルム

[行列解析5.6.P58]

5.6.問題585.6.P58(a) \(A, B \in M_2\) の例を挙げ、\(\|AB\|_2 \neq \|BA\|_2\)(フロベニウスノルム)となることを示せ。(b) \(A, B \in M_n\)、\(A\) は正規、\...
2025.10.09
5.ベクトルと行列のノルム行列解析
5.ベクトルと行列のノルム

[行列解析5.6.P57]

5.6.問題575.6.P57\(A \in M_n\) の固有値を \(|\lambda_1| \ge \cdots \ge |\lambda_n|\) の順に並べ、特異値を \(\sigma_1 \ge \cdots \ge \sigm...
2025.10.09
5.ベクトルと行列のノルム行列解析
5.ベクトルと行列のノルム

[行列解析5.6.P56]

5.6.問題565.6.P56 \(\| \cdot \|\) を \(M_n\) 上の自己共役行列ノルム(例えば、ユニタリ不変行列ノルム)とする。このとき、すべての \(A \in M_n\) に対して次を示せ:\|A\|_2 \le \...
2025.10.09
5.ベクトルと行列のノルム行列解析
次のページ
前へ 1 … 19 20 21 … 86 次へ
ホーム
行列
行列解析
5.ベクトルと行列のノルム

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式