0.行列基礎

0.行列基礎

[行列解析0.8.4]逆行列の小行列式

0.8.4 逆行列の小行列式(Minors of the inverse)Jacobiの恒等式は、正則な行列 \(A \in M_n(F)\) に対する余因子を用いた逆行列の公式を一般化し、\(A^{-1}\) の小行列式と \(A\) の...
0.行列基礎

[行列解析0.8.3]クラメルの公式

0.8.3 クラメルの公式(Cramer’s Rule)クラメルの公式は、\( A \in M_n(F) \) が正則であるとき、連立一次方程式 \( Ax = b \) の解ベクトルの特定の成分を解析的に表現する便利な方法です。次の恒等式...
0.行列基礎

[行列解析0.8.2]余因子行列と逆行列

0.8.2 余因子行列(Adjugate)と逆行列\( A \in M_n(F) \), \( n \geq 2 \) とします。行列 \( A \) の余因子の転置行列(余因子行列、または古典的随伴行列)は次で与えられます:\mathrm...