行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

4.エルミート行列、対称行列、合同行列

4.エルミート行列、対称行列、合同行列

[行列解析4.0.2]

4.0.2例 4.0.2. 行列 \( A = \in M_n \) が実または複素数の成分を持つとする。このとき、\(A\) によって生成される \(\mathbb{R}^n\) または \(\mathbb{C}^n\) 上の二次形式を考...
2025.09.15
4.エルミート行列、対称行列、合同行列行列解析
4.エルミート行列、対称行列、合同行列

[行列解析4.0.1]

4.0.1例 4.0.1. 関数 \( f : D \to \mathbb{R} \) がある領域 \( D \subset \mathbb{R}^n \) 上で二階連続微分可能であるとする。このとき、実行列H(x) = = \left[\...
2025.09.15
4.エルミート行列、対称行列、合同行列行列解析
4.エルミート行列、対称行列、合同行列

[行列解析4.0]はじめに

4.0.1 例4.0.2 例
2025.09.15
4.エルミート行列、対称行列、合同行列行列解析
次のページ
前へ 1 … 99 100 101 次へ
ホーム
行列
行列解析
4.エルミート行列、対称行列、合同行列

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式