[行列解析3.1.P8] 3.標準形と三角因子分解 X Facebook はてブ Pocket LINE コピー 2025.09.07 3.1問題8 3.1.P8 \(A \in M_n\) とし、\(\operatorname{rank} A = r \ge 1\) かつ \(A^2=0\) と仮定する。前問または(3.1.18)を用いて、\(A\) のジョルダン標準形が \(J_2(0)\oplus\cdots\oplus J_2(0)\oplus 0_{\,n-2r}\)(\(2\times 2\) ブロックが \(r\) 個)であることを示しなさい。(2.6.P23)と比較せよ。 [行列解析3.1]ジョルダン標準形の定理3.13.1.1 定義(3.1.2)J_1(\lambda) = , \quadJ_2(\lambda) =\begin{bmatrix}\lambda & 1 \0 & \lambda\end{bmatrix}(3.1.3)J = J_... 参考:Matrix Analysis:Second Edition ISBN 0-521-30587-X.(当サイトは公式と無関係です)
コメント