行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
0.行列基礎

[行列解析0.1.8]同型写像

0.1.8 同型写像(Isomorphism)\( U \) および \( V \) が同じスカラー体 \( \mathbb{F} \) 上のベクトル空間であり、関数 \( f : U \to V \) が次の性質を持つとします:\( f ...
2025.08.06
0.行列基礎行列行列解析
0.行列基礎

[行列解析0.1.7]次元

0.1.7 次元ある正の整数 \( n \) が存在して、ベクトル空間 \( V \) のすべての基底がちょうど \( n \) 個の要素からなるとき、その \( n \) を \( V \) の次元(dimension)と呼び、記号 \(...
2025.08.06
0.行列基礎行列行列解析
0.行列基礎

[行列解析0.1.6]基底への拡張

0.1.6 基底への拡張任意の線形独立なベクトル列は、何らかの方法(複数の場合もある)で \( V \) の基底に拡張できます。ベクトル空間の基底は有限とは限りません。たとえば、無限列 \( 1, t, t^2, t^3, \ldots \...
2025.08.06
0.行列基礎行列行列解析
次のページ
前へ 1 … 654 655 656 … 662 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式