行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
0.行列基礎

[行列解析0.2.7]行列の列空間と行空間

0.2.7 行列の列空間と行空間行列 \( A \in M_{m,n}(F) \) の像(range)は、その列空間(column space)とも呼ばれます。なぜなら、任意の \( x \in F^n \) に対して \( Ax \) は...
2025.08.08
0.行列基礎行列行列解析
0.行列基礎

[行列解析0.2.6]行列積のメタ力学的見方

0.2.6 行列積のメタ力学的見方(Metamechanics)行列とベクトルの積、および行列どうしの積には通常の定義のほかにも、いくつかの有用な視点があります。行列 \( A \in M_{m,n}(F) \)、列ベクトル \( x \i...
2025.08.08
0.行列基礎行列行列解析
0.行列基礎

[行列解析0.2.5]転置、共役転置、トレース

0.2.5 転置、共役転置、トレース行列 \( A = \in M_{m,n}(F) \) に対して、転置行列 \( A^T \) は \( M_{n,m}(F) \) に属する行列であり、その \( i, j \) 成分は \( a_{j...
2025.08.08
0.行列基礎行列行列解析
次のページ
前へ 1 … 650 651 652 … 660 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式