1.固有値・固有ベクトル・相似

[行列解析1.1.8]観察

観察 1.1.8. \( A \in M_n \) と \( \lambda, \mu \in \mathbb{C} \) を任意に与える。このとき、\( \lambda \in \sigma(A) \) であることと、\( \lambda...
1.固有値・固有ベクトル・相似

[行列解析1.1.7]観察

観察1.1.7行列 \( A \in M_n \) は特異行列であることと、\( 0 \in \sigma(A) \) であることは同値である。 証明.行列 \( A \) が特異であるとは、ある \( x \neq 0 \) に対して \...
1.固有値・固有ベクトル・相似

[行列解析1.1.6]定理1.1.6(固有値–固有ベクトル)

定理 1.1.6 \( p(t) \) を次数 \( k \) の多項式とする。もし \( \lambda, x \) が \( A \in M_n \) の固有値–固有ベクトルの組であれば、\( p(\lambda), x \) は \(...