行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
1.固有値・固有ベクトル・相似

[行列解析1.2.P19]

1.2.問題191.2.P19 \( A = \in M_n \) のすべての成分が 0 または 1 であり、\( A \) のすべての固有値 \(\lambda_1, \dots, \lambda_n\) が正の実数であると仮定する。この...
2025.08.12
1.固有値・固有ベクトル・相似
1.固有値・固有ベクトル・相似

[行列解析1.2.P18]

1.2.問題181.2.P18 \( A \in M_3 \) とする。このとき、特性多項式 \( p_A(t) \) がp_A(t) = t^3 - (\mathrm{tr} A)\, t^2 + (\mathrm{tr} \,\math...
2025.08.12
1.固有値・固有ベクトル・相似
1.固有値・固有ベクトル・相似

[行列解析1.2.P17]

1.2.問題171.2.P17 \( A, B \in M_n \) とし、次の行列 \( C \) を考える:C =\begin{bmatrix}0_n & B \\A & 0_n\end{bmatrix}式 (0.8.5.13–14) ...
2025.08.12
1.固有値・固有ベクトル・相似
次のページ
前へ 1 … 611 612 613 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式