行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
1.固有値・固有ベクトル・相似

[行列解析1.2.P22]

1.2.問題221.2.P22 (0.9.6.2) に示されている \(n \times n\) 循環行列 \(C_n\) を考える。与えられた \(\varepsilon > 0\) に対して、\(C_n(\varepsilon)\) を...
2025.08.12
1.固有値・固有ベクトル・相似
1.固有値・固有ベクトル・相似

[行列解析1.2.P21]

1.2.問題211.2.P21 \( A \in M_n \) と、ゼロでないベクトル \( x, v \in \mathbb{C}^n \) が与えられているとする。\( c \in \mathbb{C} \)、\( v^* x = 1 ...
2025.08.12
1.固有値・固有ベクトル・相似
1.固有値・固有ベクトル・相似

[行列解析1.2.P20]

1.2.問題201.2.P20 任意の \( A \in M_n \) に対して、次を示せ:\det(I + A) = 1 + E_1(A) + \cdots + E_n(A)ここで、\(E_k(A)\) は \(A\) の固有値の \(k...
2025.08.12
1.固有値・固有ベクトル・相似
次のページ
前へ 1 … 610 611 612 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式