行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
1.固有値・固有ベクトル・相似

[行列解析1.3.10]補題 1.3.10.

補題 1.3.10. \( B_1 \in M_{n_1}, \dots, B_d \in M_{n_d} \) が与えられ、次のように直和で構成される行列 \( B \) を考える。B =\begin{bmatrix}B_1 & 0 & ...
2025.08.13
1.固有値・固有ベクトル・相似行列解析
1.固有値・固有ベクトル・相似

[行列解析1.3.9]

定理 1.3.9. もし \( A \in M_n \) が \( n \) 個の異なる固有値を持つならば、\( A \) は対角化可能である。証明. 各 \( i = 1, \dots, n \) に対して、固有値 \(\lambda_i...
2025.08.13
1.固有値・固有ベクトル・相似行列解析
1.固有値・固有ベクトル・相似

[行列解析1.3.8]補題

補題 1.3.8.\( A \in M_n \) の \(k \geq 2\) 個の異なる固有値を \( \lambda_1, \ldots, \lambda_k \) とし(すなわち、\(i \neq j\) ならば \( \lambda...
2025.08.13
1.固有値・固有ベクトル・相似行列解析
次のページ
前へ 1 … 606 607 608 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式