行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
1.固有値・固有ベクトル・相似

[行列解析1.3.26]

例 1.3.26. 任意の \( n \geq 2 \) に対して、次の \( n \times n \) 実反対称テプリッツ行列を考える。A = _{i,j=1}^{n}= \begin{bmatrix}0 & -1 & -2 & \cd...
2025.08.14
1.固有値・固有ベクトル・相似行列解析
1.固有値・固有ベクトル・相似

[行列解析1.3.25]例 1.3.25.

例 1.3.25. 任意の \( n \geq 2 \) に対して、次の \( n \times n \) 実対称ハンケル行列を考える。A = _{i,j=1}^{n}= \begin{bmatrix}2 & 3 & 4 & \cdots ...
2025.08.14
1.固有値・固有ベクトル・相似行列解析
1.固有値・固有ベクトル・相似

[行列解析1.3.24]コーシーの行列式恒等式

例 1.3.24. コーシーの行列式恒等式正則な \( A \in M_n \) と、\( x, y \in \mathbb{C}^n \) が与えられているとする。このとき、\begin{aligned}\det(A + x y^{T})...
2025.08.14
1.固有値・固有ベクトル・相似行列解析
次のページ
前へ 1 … 602 603 604 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式