行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
1.固有値・固有ベクトル・相似

[行列解析1.3.P28]

1.3.問題281.3.P28 \(A \in M_{m,n}, B \in M_{n,m}\) が与えられているとする。このとき次を証明せよ:\det(I_m + AB) = \det(I_n + BA)
2025.08.17
1.固有値・固有ベクトル・相似行列解析
1.固有値・固有ベクトル・相似

[行列解析1.3.P27]

1.3.問題271.3.P27(1.3.P26 の続き) \(A = \in M_{mn}\) を与えられた \(m \times m\) ブロック行列とし、各ブロック \(A_{kl} = \in M_n\) が上三角行列であると仮定する...
2025.08.17
1.固有値・固有ベクトル・相似行列解析
1.固有値・固有ベクトル・相似

[行列解析1.3.P26]

1.3.問題261.3.P26 \(e_1, \dots, e_n\) および \(\varepsilon_1, \dots, \varepsilon_m\) を、それぞれ \(\mathbb{C}^n\) および \(\mathbb{C}...
2025.08.16
1.固有値・固有ベクトル・相似行列解析
次のページ
前へ 1 … 591 592 593 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式