行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
1.固有値・固有ベクトル・相似

[行列解析1.3.P31]

1.3.問題311.3.P31 \(a, b \in \mathbb{C}\) とする。次の行列の固有値が \(a \pm ib\) であることを示せ:\begin{bmatrix}a & -b \\b & a\end{bmatrix}
2025.08.17
1.固有値・固有ベクトル・相似行列解析
1.固有値・固有ベクトル・相似

[行列解析1.3.P30]

1.3.問題301.3.P30 \(A \in M_n\) が対角化可能であり、\(A = S \Lambda S^{-1}\) とする。ただし、\(\Lambda\) は (1.3.13) の形をもつとする。\(f\) が複素数値関数で、...
2025.08.17
1.固有値・固有ベクトル・相似行列解析
1.固有値・固有ベクトル・相似

[行列解析1.3.P29]

1.3.問題291.3.P29 \(A = \in M_n\) とし、各 \(a_{ii} = 0\)(\(i=1,\dots,n\))かつ、すべての \(i \neq j\) について \(a_{ij} \in \{-1,1\}\) と仮...
2025.08.17
1.固有値・固有ベクトル・相似行列解析
次のページ
前へ 1 … 590 591 592 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式