行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
1.固有値・固有ベクトル・相似

[行列解析1.4.p13]

1.4.問題131.4.P13 行列 \(A \in M_n\) とゼロでないベクトル \(x, y \in \mathbb{C}^n\) が与えられ、\(\lambda, \lambda_2, \dots, \lambda_n\) を \...
2025.08.19
1.固有値・固有ベクトル・相似行列解析
1.固有値・固有ベクトル・相似

[行列解析1.4.p12]

1.4.問題121.4.P12 行列 \(A \in M_n\) の固有値を \(\lambda\) とする。(a) \(A - \lambda I\) の任意の \(n-1\) 列が線形独立であることと、\(\lambda\) に対応する...
2025.08.19
1.固有値・固有ベクトル・相似行列解析
1.固有値・固有ベクトル・相似

[行列解析1.4.p11]

1.4.問題111.4.P11 行列 \(A \in M_n\) が非簡約上ヘッセンベルグ行列(unreduced upper Hessenberg matrix、参照: 0.9.9)であると仮定する。なぜすべての \(\lambda \i...
2025.08.19
1.固有値・固有ベクトル・相似行列解析
次のページ
前へ 1 … 578 579 580 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式