行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
3.標準形と三角因子分解

[行列解析3.1.18]補題(Segre特性)

3.1.18補題補題 3.1.18. \(A \in M_n\) の固有値 \(\lambda\) を与えられたものとし、\(w_1(A, \lambda), w_2(A, \lambda), \ldots\) を \(\lambda\) ...
2025.09.04
3.標準形と三角因子分解行列解析
3.標準形と三角因子分解

[行列解析3.1.11]定理(Weyr特性)

3.1.11定理 3.1.11. \(A \in M_n\) が与えられているとする。このとき、正則行列 \(S \in M_n\)、正の整数 \(q\) および \(n_1, \ldots, n_q\) (ただし \(n_1 + n_2 ...
2025.09.04
3.標準形と三角因子分解行列解析
3.標準形と三角因子分解

[行列解析3.1.5]定理

3.1.5定理定理 3.1.5. \(A \in \mathbb{M}_n\) が厳密な上三角行列(すなわち対角成分とその下がすべてゼロ)であるとする。このとき、ある正則行列 \(S \in \mathbb{M}_n\) と、整数 \(n_...
2025.09.03
3.標準形と三角因子分解行列解析
次のページ
前へ 1 … 479 480 481 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式