行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
3.標準形と三角因子分解

[行列解析3.1.P13]

3.1問題133.1.P13正の整数 \(k,m\) を与え、次のブロック・ジョルダン行列を考えます。\begin{align}&J_k^+(\lambda I_m):= \notag \\&\begin{bmatrix}\lambda I...
2025.09.07
3.標準形と三角因子分解行列解析
3.標準形と三角因子分解

[行列解析3.1.P12]

3.1問題123.1.P12 \(A\in M_n\) をとり、正の整数 \(k,p\) を与える。\(w_k=w_k(A,\lambda)\)(\(k=1,2,\dots\))、\(s_k=s_k(A,\lambda)\)(\(k=1,2...
2025.09.07
3.標準形と三角因子分解行列解析
3.標準形と三角因子分解

[行列解析3.1.P11]

3.1問題111.P11(3.1.15)\begin{align}& r_k(A,\lambda) = \operatorname{rank}(A - \lambda I)^k, \notag \quad \\& r_0(A,\lambda...
2025.09.07
3.標準形と三角因子分解行列解析
次のページ
前へ 1 … 474 475 476 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式