行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
3.標準形と三角因子分解

[行列解析3.1.P16]

3.1問題163.1.P16ここで λ ≠ 0 かつ k ≥ 2 とする。このとき \( J_k(\lambda)^{-1} \) は \( J_k(\lambda) \) の多項式で表される (2.4.3.4)。 (a) \( J_k(\...
2025.09.07
3.標準形と三角因子分解行列解析
3.標準形と三角因子分解

[行列解析3.1.P15]

3.1問題153.1.P15\(n\ge 2\)、非ゼロベクトル \(x,y\in\mathbb{C}^n\) を与え、\(A=xy^\ast\) とする。(a) \(A\) のジョルダン標準形は \(B\oplus 0_{n-2}\) で...
2025.09.07
3.標準形と三角因子分解行列解析
3.標準形と三角因子分解

[行列解析3.1.P14]

3.1問題143.1.P14\(A\in M_n\) とする。式 (3.1.18) を用いて \(A\) と \(A^{\mathrm T}\) が相似であることを示しなさい。さらに、\(A\) と \(A^\ast\) が相似であるかどう...
2025.09.07
3.標準形と三角因子分解行列解析
次のページ
前へ 1 … 473 474 475 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式