行列でも使える拡張不等式

不等式研究所

  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
3.標準形と三角因子分解

[行列解析3.1.P22]

3.1問題223.1.P22\( A \in M_n(\mathbb{R}) \) が三重対角行列であるとする。 (a) もし \( a_{i,i+1} a_{i+1,i} \gt 0 \) が \( i = 1, \ldots, n-1 ...
2025.09.07
3.標準形と三角因子分解行列解析
3.標準形と三角因子分解

[行列解析3.1.P21]

3.1問題213.1.P21\( A \in M_n \) が既約でない上ヘッセンベルグ行列であるとする((0.9.9) 参照)。(a) \( A \) の各固有値 λ に対して \( w_1(A, \lambda) = 1 \) であり、...
2025.09.07
3.標準形と三角因子分解行列解析
3.標準形と三角因子分解

[行列解析3.1.P20]

3.1問題203.1.P20\( A \in M_n \) で \( n > \mathrm{rank}(A) \geq 1 \) と仮定する。もし \(\mathrm{rank}(A) = \mathrm{rank}(A^2)\)、すなわ...
2025.09.07
3.標準形と三角因子分解行列解析
次のページ
前へ 1 … 471 472 473 … 661 次へ

カテゴリー

  • 0.行列基礎
  • 1.固有値・固有ベクトル・相似
  • 2.ユニタリ相似とユニタリ同値
  • 3.標準形と三角因子分解
  • 4.エルミート行列、対称行列、合同行列
  • 5.ベクトルと行列のノルム
  • 6.固有値の位置と摂動
  • 7.正定値および半正定値行列
  • 8.正および非負行列
  • 不等式
  • 拡張不等式
  • 行列
  • 行列解析
  • 行列解析数学基礎
  • 量子力学
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式