6.固有値の位置と摂動

[行列解析6.3.P10]

6.3.問題10問題 6.3.P10実対称行列A(t) = \begin{bmatrix} 0 & t \\ t & 0 \end{bmatrix}, \quad t \in \mathbb{R}を考える。\(A(t)\) の固有値は \(...
6.固有値の位置と摂動

[行列解析6.3.P9]

6.3.問題9問題 6.3.P9式 (6.3.5) の証明では、もし \(U = \in M_n\) がユニタリ行列であれば、行列 \(A = \) は二重確率行列(doubly stochastic)かつユニストカスティック(unisto...
6.固有値の位置と摂動

[行列解析6.3.P8]

6.3.問題8問題 6.3.P8式 (6.3.5) の証明の議論を用いて、定理の仮定の下で、整数 1, …, n の順列 \(\tau\) が存在して次を満たすことを示せ。\sum_{i=1}^{n} |\hat{\lambda}_{\ta...
6.固有値の位置と摂動

[行列解析6.3.P7]

6.3.問題7問題 6.3.P7次の行列を考える。A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad E = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end...
6.固有値の位置と摂動

[行列解析6.3.P6]

6.3.問題6問題 6.3.P6式 (6.3.4) は、正規行列において固有値の摂動と行列要素の摂動の比が有限であることを示している。しかし、行列の固有値はその特性多項式の零点にすぎない。この事実が前問の結論とどのように両立するかを説明せよ...
6.固有値の位置と摂動

[行列解析6.3.P5]

6.3.問題5問題 6.3.P5実数 \(t_0\) に対して多項式 \(p(t) = (t - t_0)^2\) を考える。 \(\epsilon > 0\) のとき、多項式 \(p(t) - \epsilon\) の零点が \(t_0 ...
6.固有値の位置と摂動

[行列解析6.3.P4]

6.3.問題4問題 6.3.P4\(A \in M_n\) を正規行列とし、\(S\) を \(\mathbb{C}^n\) の \(k\) 次元部分空間とする。さらに \(\gamma \in \mathbb{C}\)、\(\delta ...
6.固有値の位置と摂動

[行列解析6.3.P3]

6.3.問題3問題 6.3.P3正規行列 \(A \in M_n\) を次のように分割する:A = \begin{bmatrix} B & X \\ Y & C \end{bmatrix}ここで \(B \in M_k\)、\(C \in ...
6.固有値の位置と摂動

[行列解析6.3.P2]

6.3.問題2問題 6.3.P2式 (6.3.14) の上界は残差ベクトル \(r = A\hat{x} - \hat{\lambda}\hat{x}\) のノルムを含む。与えられた \(A \in M_n\) と非零ベクトル \(\hat...
6.固有値の位置と摂動

[行列解析6.3.P1]

6.3.問題1問題 6.3.P1\(A = \in M_n\) が正規行列であり、その固有値を \(\lambda_1, \ldots, \lambda_n\) とする。次を示せ。\sum_{i=1}^{n} |a_{ii} - \lamb...
6.固有値の位置と摂動

[行列解析6.3]問題集

6.3.問題集この節では、正規行列に関する固有値の誤差評価や残差ベクトル、部分行列との関係、摂動理論に関する重要な性質を確認する。問題 6.3.P1\(A = \in M_n\) が正規行列であり、その固有値を \(\lambda_1, \...
6.固有値の位置と摂動

[行列解析6.3.14]定理:近似固有値の誤差評価と固有ベクトルの感度

6.3.14定理 6.3.14. \(A \in M_n\) が対角化可能な行列であり、\(A = S \Lambda S^{-1}\)、ただし \(\Lambda = \mathrm{diag}(\lambda_1, \ldots, \l...
6.固有値の位置と摂動

[行列解析6.3.12]定理:単純固有値の摂動に対する変化

6.3.12この定理は、行列 \( A \in M_n \) の単純固有値 \( \lambda \) が、摂動 \( A + tE \) によってどのように変化するかを定量的に示すものである。ここで \( E \in M_n \) は任意...
6.固有値の位置と摂動

[行列解析6.3.10]単純固有値に関する補題(左・右固有ベクトルの関係)

6.3.10次の補題は、行列 \( A \in M_n \) の単純固有値に対応する右・左固有ベクトルの性質と、それを用いたブロック分解の存在を示している。補題 6.3.10. \( \lambda \) を \( A \in M_n \)...
6.固有値の位置と摂動

[行列解析6.3.8]系: エルミート行列に対する固有値摂動の安定性

6.3.8系6.3.8.\(A, E \in M_n\) とする。\(A\) がエルミートであり、\(A+E\) が正規であると仮定する。\(A\) の固有値を昇順に \(\lambda_1 \le \cdots \le \lambda_n...
6.固有値の位置と摂動

[行列解析6.3.5]定理(ホフマン=ワイルント): 正規行列の固有値安定性(フロベニウスノルム版)

6.3.5定理6.3.5.\(A, E \in M_n\) とし、\(A\) と \(A+E\) の両方が正規であると仮定する。\(A\) の固有値をある順序で \(\lambda_1,\dots,\lambda_n\)、\(A+E\) の...
6.固有値の位置と摂動

[行列解析6.3.4]補題:正規行列に対する摂動と固有値の変化

6.3.4\( A, E \in M_n \) とし、\( A \) が正規行列であるとする。このとき、もし \( \hat{\lambda} \) が \( A + E \) の固有値であるならば、\( A \) の固有値 \( \lam...
6.固有値の位置と摂動

[行列解析6.3.2]定理(バウアーとファイクの定理)

6.3.2\(A \in M_n\) が対角化可能であり、非特異行列 \(S\) を用いて \(A = S \Lambda S^{-1}\) と表されるとする。ここで \(\Lambda\) は対角行列である。また、\(E \in M_n\...
6.固有値の位置と摂動

[行列解析6.3.1]観察:対角化可能な行列に対する固有値摂動

6.3.1\(A \in M_n\) が対角化可能であり、非特異行列 \(S\) を用いて \(A = S \Lambda S^{-1}\) と表されるとする。ここで \(\Lambda\) は対角行列である。また、\(E \in M_n\...
6.固有値の位置と摂動

[行列解析6.3]固有値摂動定理

6.3.目次6.3.16.3.固有値摂動定理 (Eigenvalue perturbation theorems)\(D = \mathrm{diag}(\lambda_1, \dots, \lambda_n) \in M_n\)、\(E ...
6.固有値の位置と摂動

[行列解析6.2.P8]

6.2.問題86.2.P8\(A \in M_n\) に対して \(\rho(A) \le \|A\|_\infty\) が成り立つことは既知である。\(A\) が不可約であり、かつ絶対値行和がすべて等しくない場合に、なぜ \(\rho(A...
6.固有値の位置と摂動

[行列解析6.2.P7]

6.2.問題76.2.P7\(A \in M_n\) を主対角成分がすべて 2、上対角成分がすべて −1 の実対称三重対角行列とする。(6.2.27) を用いて \(A\) が正定値であることを示せ。
6.固有値の位置と摂動

[行列解析6.2.P6]

6.2.問題66.2.P6(a) なぜ不可約な上ヘッセンベルグ行列は未簡約であるのかを説明し、 reducible な未簡約上ヘッセンベルグ行列の例を挙げよ。 (b) エルミートまたは対称三重対角行列が未簡約であることと不可約であることが同...
6.固有値の位置と摂動

[行列解析6.2.P5]

6.2.問題56.2.P5(6.2.28) を用いて、多項式 \(p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1 z + a_0\), \(a_0 \ne 0\) の根 \(\tilde{z}\) に対...
6.固有値の位置と摂動

[行列解析6.2.P4]

6.2.問題46.2.P4第8章で証明するが、正の成分を持つ正方行列は必ず正の固有値と正の成分を持つ対応する固有ベクトルを持つ。この事実と前問を用いて、任意の \(A \in M_n\) に対して \(\rho(A) \le \rho(|A...
6.固有値の位置と摂動

[行列解析6.2.P3]

6.2.問題36.2.P3\(A = \in M_n\)、\(\lambda, x = \) が \(|A|\) の固有値・固有ベクトルの組であり、すべての \(x_i > 0\) であるとする。\(D = \mathrm{diag}(x_...
6.固有値の位置と摂動

[行列解析6.2.P2]

6.2.問題26.2.P2例を用いて、(6.2.28) における不可約性の仮定が必要であることを示せ。
6.固有値の位置と摂動

[行列解析6.2.P1]

6.2.問題16.2.P1行列 \(A \in M_n\) が不可約であり、かつ \(n \ge 2\) であるとする。\(A\) にゼロ行またはゼロ列が存在しないことを示せ。
6.固有値の位置と摂動

[行列解析6.2]問題集

6.2.問題集6.2.P1 行列 \(A \in M_n\) が不可約であり、かつ \(n \ge 2\) であるとする。\(A\) にゼロ行またはゼロ列が存在しないことを示せ。 6.2.P2 例を用いて、(6.2.28) における不可約性...
6.固有値の位置と摂動

[行列解析6.2.27]系:タウスキー

6.2.27系6.2.27(タウスキー)行列 \(A = \in M_n\) が不可約な対角優越であるとする。このとき次が成り立つ。(a) \(A\) は正則である。(b) \(A\) のすべての主対角成分が実数かつ正であれば、\(A\) ...