3.標準形と三角因子分解

3.標準形と三角因子分解

[行列解析3.5.1]定義

3.5.1定義 3.5.1. \( A \in M_n \) とする。もし \( L \in M_n \) が下三角行列であり、\( U \in M_n \) が上三角行列であるとき、分解A = LUを \( A \) の LU分解 (LU...
3.標準形と三角因子分解

[行列解析3.5]三角因子分解と標準形

3.5 この節の目次3.5.13.5 三角因子分解と標準形線形方程式系 \(Ax=b\) において、係数行列 \(A \in M_n\) が非特異な三角行列(0.9.3)であるならば、一意解 \(x\) の計算は非常に容易である。例えば、\...
3.標準形と三角因子分解

[行列解析3.4.P11]

3.4.問題113.4.P11 \(A \in M_n\) を与える。\(A\) のワイル標準形とジョルダン標準形が同じであることと、次のいずれかが成り立つことは同値であることを示せ:\(A\) が非退化(nonderogatory)である...
3.標準形と三角因子分解

[行列解析3.4.P10]

3.4.問題103.4.P10ジョルダン行列 \(J\) のワイル標準形が \(J\) 自身と一致するのは、任意の固有値 \(\lambda\) について、(i) \(J\) に \(\lambda\) を固有値とするジョルダンブロックが正...
3.標準形と三角因子分解

[行列解析3.4.P9]

3.4.問題93.4.P9与えられた正方行列 \(A\) のワイル標準形は、ジョルダン標準形(3.2.9)と同様に、\(A\) の類似類に属する行列のうち全ての非対角の非零要素の数が最小であることを説明せよ。