2.4.問題29
2.4.P29
\( A \in \mathbb{M}_n \)、\( x, y \in \mathbb{C}^n \) は非零ベクトルで、\( A x = \lambda x \)、\( y^* A = \lambda y^* \) を満たすとする。ここで、\( \lambda \) は単純固有値とする。このとき、任意の \( \kappa \neq 0 \) について
A - \lambda I + \kappa x y^*
は正則(非特異)であることを示せ。
行列解析の総本山

[行列解析]総本山
行列解析の総本山。行列解析の内容を網羅的かつ体系的に整理しています。線形代数の学習を一通り終えた方が、次のステップとして取り組むのに最適です。行列に関する不等式を研究するには、行列解析の知識が欠かせません。
コメント