[行列解析1.3.P32]

1.3.問題32

1.3.P32

\(x \in \mathbb{C}^n\) を与えられた非零ベクトルとし、\(x = u + i v\) と書く。ただし \(u, v \in \mathbb{R}^n\) とする。

このとき、ベクトル \(x, \bar{x} \in \mathbb{C}^n\) が一次独立であるのは、実ベクトル \(u, v \in \mathbb{R}^n\) が一次独立である場合に限ることを示せ。


行列解析の総本山

総本山の目次📚

[行列解析]総本山
行列解析の総本山。行列解析の内容を網羅的かつ体系的に整理しています。線形代数の学習を一通り終えた方が、次のステップとして取り組むのに最適です。行列に関する不等式を研究するには、行列解析の知識が欠かせません。

記号の意味

[行列解析9.0]主要な記号一覧
行列解析で使用している記号や用語の簡単な説明です。

コメント

タイトルとURLをコピーしました