[行列解析1.2.16]定理

1.2.16.定理

定理 1.2.16. \(A \in M_n\) とすると、各 \(k = 1, \ldots, n\) に対して \(S_k(A) = E_k(A)\) が成り立ちます。

 S_k(A) = E_k(A), \quad k = 1, 2, \ldots, n 

次の定理は、特異な複素行列は、常にごくわずかにシフトすることで非特異行列にできることを示しています。

この重要な事実は、多くの場合、非特異行列の性質から特異行列に関する結果を導くために、連続性の議論を用いることを可能にします。


行列解析の総本山

[行列解析]総本山
行列解析の総本山。行列解析の内容を網羅的かつ体系的に整理しています。線形代数の学習を一通り終えた方が、次のステップとして取り組むのに最適です。行列に関する不等式を研究するには、行列解析の知識が欠かせません。

コメント

タイトルとURLをコピーしました