2.4.問題16
2.4.P16
\( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{M}_2 \) の固有値を \( \lambda \) とする。
\( \mu = a + d - \lambda \) も \( A \) の固有値である理由を説明せよ。
\( (A - \lambda I)(A - \mu I) = (A - \mu I)(A - \lambda I) = 0 \) であることを説明せよ。
\( \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} \) の任意の非零列ベクトルは、\( A \) の固有値 \( \mu \) に対応する固有ベクトルであり、任意の非零行ベクトルは \( \lambda \) に対応する左固有ベクトルの随伴転置であることを導け。
\( \begin{pmatrix} \lambda - d & b \\ c & \lambda - a \end{pmatrix} \) の任意の非零列ベクトルは、\( A \) の固有値 \( \mu \) に対応する固有ベクトルであり、任意の非零行ベクトルは \( \lambda \) に対応する左固有ベクトルの随伴転置であることを導け。
コメント