[行列解析1.3.20]定義(同時対角化可能) 固有値・固有ベクトル・類似性 X Facebook はてブ Pocket LINE コピー 2025.08.14 定義 1.3.20.同時対角化可能 \( F \subset M_n \) が同時対角化可能であるとは、ある正則行列 \( S \in M_n \) が存在して、すべての \( A \in F \) に対して \( S^{-1} A S \) が対角行列となることをいう。 [行列解析1.3]相似性1.3 相似性私たちは、\( M_n \) に属する行列の相似変換が、複素数空間 \( \mathbb{C}^n \) 上での基底を変えた表現に対応することを知っています。したがって、相似を調べることは、ある線形変換に固有の性質や、その線形... 注:当サイトはCAMBBRIDGE公式サイトとは無関係です。「Matrix Analysis:Second Edition Roger A. Horn University of Utah Charles R. Johnson」
コメント