行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

2.ユニタリ相似とユニタリ同値

2.ユニタリ相似とユニタリ同値

[行列解析2.1.3]定義(ユニタリ・実直交行列)

2.1.3定義 2.1.3ユニタリ・実直交行列\( U \in M_n \) が「ユニタリ」であるとは、\( U^* U = I \) を満たすことである。\( U \in M_n(\mathbb{R}) \) が「実直交行列」であるとは、...
2025.08.19
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.1.2]定理

2.1.2定理 2.1.2任意の直交正規なベクトル列は線形独立である。証明\( \{x_1, \ldots, x_k\} \) が直交正規であると仮定し、次のような線形結合がゼロになるとする: 0 = \alpha_1 x_1 + \cdo...
2025.08.19
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.1.1]定義(直交・直交正規)

2.1.1.定義定義 2.1.1ベクトルの列 \( x_1, \ldots, x_k \in \mathbb{C}^n \) が「直交する」とは、すべての \( i \ne j \) に対して \( x_i^* x_j = 0 \) が成り...
2025.08.19
2.ユニタリ相似とユニタリ同値行列解析
次のページ
前へ 1 … 93 94 95 次へ
ホーム
行列
行列解析
2.ユニタリ相似とユニタリ同値
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式