行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

2.ユニタリ相似とユニタリ同値

2.ユニタリ相似とユニタリ同値

[行列解析2.1.p5]置換行列が直交群の部分群である理由と個数

2.1.p52.1.問題5\( M_n \) における置換行列(0.9.5)が実直交行列の群の部分群(つまり自分自身が群となる部分集合)であることを示せ。\( M_n \) における異なる置換行列は何通りあるか?ヒント正方行列\( P\) ...
2025.08.22
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.1.p4]実対角直交行列の特徴づけ

2.1.P4 2.1.問題4実対角直交行列の特徴づけを与えよ。ヒントユニタリ行列は次のような形であわわされる(2.1.p3)。 \mathrm{diag}(e^{i\theta_1}, e^{i\theta_2}, \ldots, e^{i...
2025.08.22
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.1.p3]ユニタリ性を満たす対角行列のすべての形を示す

2.1.P3 2.1.問題3実パラメータ \(\theta_1, \theta_2, \ldots, \theta_n\) が与えられたとき、U = \mathrm{diag}(e^{i\theta_1}, e^{i\theta_2}, \...
2025.08.22
2.ユニタリ相似とユニタリ同値行列解析
次のページ
前へ 1 … 87 88 89 … 95 次へ
ホーム
行列
行列解析
2.ユニタリ相似とユニタリ同値
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式