行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

2.ユニタリ相似とユニタリ同値

2.ユニタリ相似とユニタリ同値

[行列解析2.1.p11]ユニタリ相似とユニタリ同値の基礎

2.1.p112.1.問題11正則行列 \( A \in M_n \) が斜直交行列(skew orthogonal)であるとは、\( A^{-1} = -A^T \) が成り立つときである。以下を示せ:\( A \) が斜直交 ⇔ \( ...
2025.08.23
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.1.p10]ユニタリ行列と直交性の証明

2.1.p102.1.問題10\( U \in M_n \) がユニタリであるとき、任意の \( x, y \in \mathbb{C}^n \) に対して、\( x \) と \( y \) が直交している ⇔ \( Ux \) と \(...
2025.08.23
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.1.p9]ユニタリ行列の性質と相似・同値性の問題

2.1.p92.1.問題9\( U \in M_n \) がユニタリであるとき、\( \overline{U}, U^{\top}, U^* \) もすべてユニタリであることを示せ。解答例U^*U=I \\(U^*)^*(U^*)=({U^...
2025.08.23
2.ユニタリ相似とユニタリ同値行列解析
次のページ
前へ 1 … 85 86 87 … 95 次へ
ホーム
行列
行列解析
2.ユニタリ相似とユニタリ同値
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式