行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

2.ユニタリ相似とユニタリ同値

2.ユニタリ相似とユニタリ同値

[行列解析2.2.p7]

2.2.問題72.2.P7:ユニタリ相似ではないが恒等式を満たす例恒等式 (2.2.2) を満たすが、ユニタリ相似ではない 2×2 行列の例を挙げ、それがなぜユニタリ相似でないのかを説明してください。
2025.08.23
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.2.p6]

2.2.問題62.2.P6:ユニタリ相似に関する条件\( A \in M_n \)、\( B, C \in M_m \) とします。(2.2.6) または (2.2.8) を用いて、次のいずれかの条件が成り立つとき、\( B \) と \(...
2025.08.23
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.2.p5]

2.2.問題52.2.P5\( A \in M_n \) であり、あるユニタリ行列 \( U \in M_n \) が存在して A^* = UAU^* を満たすとする。このとき、\( U \) は \( A + A^* \) と可換であるこ...
2025.08.23
2.ユニタリ相似とユニタリ同値行列解析
次のページ
前へ 1 … 74 75 76 … 95 次へ
ホーム
行列
行列解析
2.ユニタリ相似とユニタリ同値
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式