行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

2.ユニタリ相似とユニタリ同値

2.ユニタリ相似とユニタリ同値

[行列解析2.3.p4]可換でなくても同時上三角化できる例

2.3.問題42.3.P4次の行列族 \( \mathcal{F} \) を考える:\mathcal{F} =\left\{\begin{bmatrix}0 & -1 \\0 & -1\end{bmatrix},\begin{bmatrix...
2025.08.24
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.3.p3]実行列で非実固有値が共役対となる理由

2.3.P32.3.問題3\( A \in M_n(\mathbb{R}) \) の場合、非実固有値(存在するならば)は共役な対として現れる理由を説明せよ。ヒント実行列 \(A\) の特性多項式は係数が実数になる。このため、その根である固有...
2025.08.24
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.3.p2]単位ベクトルを第1列に持つ直交行列の構成

2.3.P22.3.問題2\(x \in \mathbb{R}^n\) が与えられた単位ベクトルであるとき、(2.3.P1) で述べた構成を簡略化して、第1列が \(x\) であるような実直交行列 \(Q \in M_n(\mathbb{R...
2025.08.24
2.ユニタリ相似とユニタリ同値行列解析
次のページ
前へ 1 … 69 70 71 … 95 次へ
ホーム
行列
行列解析
2.ユニタリ相似とユニタリ同値
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式