行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

2.ユニタリ相似とユニタリ同値

2.ユニタリ相似とユニタリ同値

[行列解析2.4.p3]ケイリー・ハミルトンの定理の証明と余因子行列の行列多項式展開

2.4.P32.4.問題3定理 (2.4.3.2) でのケイリー・ハミルトン定理の証明は複素行列が固有値を持つことに依存しているが、特性多項式の定義や置換 \( p_A(t) \to p_A(A) \) は固有値や複素数体の特性を必要としな...
2025.08.26
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.4.p2]上三角行列の階数と固有値に基づく階数の下界

2.4.P22.4.問題2なぜ上三角行列の階数(rank)は、その非零の主対角成分の数以上であるか説明せよ。行列 \( A = \in \mathbb{M}_n \) がちょうど \( k \geq 1 \) 個の非零固有値 \(\lamb...
2025.08.26
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.4.p1]n個の相異なる固有値を持つ行列の集合の開性

2.4.P12.4.問題1行列 \( A = \in \mathbb{M}_n \) が異なる固有値を \( n \) 個持つと仮定する。定理 (2.4.9.2) を用いて、ある \(\delta > 0\) が存在し、すべての行列 \( ...
2025.08.26
2.ユニタリ相似とユニタリ同値行列解析
次のページ
前へ 1 … 60 61 62 … 95 次へ
ホーム
行列
行列解析
2.ユニタリ相似とユニタリ同値
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式