行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

2.ユニタリ相似とユニタリ同値

2.ユニタリ相似とユニタリ同値

[行列解析2.4.p6]可換でない行列の線形結合の固有値と積の固有値

2.4.P62.4.問題6以下の行列を考える。A =\begin{pmatrix}1 & 0 & 0 \\0 & 2 & 0 \\0 & 0 & 3\end{pmatrix}, \quadB =\begin{pmatrix}-2 & 1 &...
2025.08.26
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.4.p5]対角化不可能な行列の近傍と対角化可能性

2.4.P52.4.問題5次の行列を考える。\begin{pmatrix}0 & 1 \\0 & 0\end{pmatrix}なぜ任意に対角化不可能な行列が、ある対角化可能な行列に任意に近い位置に存在しうるのか説明せよ。さらに、(2.4.P...
2025.08.26
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.4.p4]交換する行列と余因子行列・逆行列の可換性

2.4.P42.4.問題4行列 \( A, B \in \mathbb{M}_n \) が交換する(すなわち \( AB = BA \))と仮定する。なぜ \( B \) が \(\mathrm{adj}\, A\) と交換し、また \(\...
2025.08.26
2.ユニタリ相似とユニタリ同値行列解析
次のページ
前へ 1 … 59 60 61 … 95 次へ
ホーム
行列
行列解析
2.ユニタリ相似とユニタリ同値
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式