行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

2.ユニタリ相似とユニタリ同値

2.ユニタリ相似とユニタリ同値

[行列解析2.4.p21]モーメント行列と判別式の性質

2.4.P212.4.問題21\( A \in \mathbb{M}_n \) の固有値を \( \lambda_1, \ldots, \lambda_n \) とする。ハンケル行列K = _{i,j=1}^nは \( A \) に対応する...
2025.08.26
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.4.p20]積が零となる行列の同時上三角化

2.4.P202.4.問題20\( A, B \in \mathbb{M}_n \) で \( AB = 0 \) とし、\( C = AB - BA = -BA \) とする。2つの非可換変数の多項式 \( p(s,t) \) を考える。...
2025.08.26
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.4.p19]ブロック行列の同時上三角化の同値条件

2.4.P192.4.問題19\( n \geq 3 \), \( k \in \{1, \ldots, n-1\} \) とする。\( A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \...
2025.08.26
2.ユニタリ相似とユニタリ同値行列解析
次のページ
前へ 1 … 54 55 56 … 95 次へ
ホーム
行列
行列解析
2.ユニタリ相似とユニタリ同値
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式