行列でも使える拡張不等式
不等式研究所
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
    • [行列解析0]復習と雑学
    • [行列解析1]固有値・固有ベクトルと相似
    • [行列解析2]ユニタリ相似性とユニタリ同値性
    • [行列解析3]相似性のための標準形および三角分解
    • [行列解析4]エルミート行列、対称行列、合同行列
    • [行列解析5]ベクトルと行列のノルム
    • [行列解析6]固有値の位置と摂動
    • [行列解析7]正定値および半正定値行列
    • [行列解析8]正および非負行列
  • AM-GM不等式
    • プライバシーポリシー
    • お問合せ

2.ユニタリ相似とユニタリ同値

2.ユニタリ相似とユニタリ同値

[行列解析2.6.p37]

2.6.問題372.6.P37\(A \in M_n\) が異なる特異値を持つとする。\(A = V \Sigma W^*\) および \(A = \hat V \Sigma \hat W^*\) が特異値分解である。(a) \(A\) が...
2025.09.02
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.6.p36]

2.6.問題362.6.P36\(A \in M_n\) がランク r を持ち、正の異なる特異値を \(s_1, \ldots, s_d\)、それぞれの重複度を \(n_1, \ldots, n_d\) とし、特異値分解 \(A = V \...
2025.09.02
2.ユニタリ相似とユニタリ同値行列解析
2.ユニタリ相似とユニタリ同値

[行列解析2.6.p35]

2.6.問題352.6.P35前問の表記を用いて次を示せ:\sum_{i=1}^{n} |\lambda_i(A)|^2 \\ \le \sqrt{ (\mathrm{tr} AA^* - \frac{1}{n} |\mathrm{tr} ...
2025.09.02
2.ユニタリ相似とユニタリ同値行列解析
次のページ
前へ 1 2 3 4 … 95 次へ
ホーム
行列
行列解析
2.ユニタリ相似とユニタリ同値
不等式研究所
© 2023 不等式研究所.
  • 行列でも使える拡張不等式
  • 拡張不等式
  • [行列解析]総本山📚
  • AM-GM不等式